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Combustion instabilities are caused by a coupling between acoustic waves and unsteady heat release. Helmholtz
resonators are widely used as acoustic dampers to stabilize unstable combustion systems. Such dampers are typically
subjected to alow Mach number grazing flow and are normally only effective over a narrow frequency range, close to
the resonant frequency. To increase the effective frequency range, a Helmholtz resonator with an oscillating volume,
implemented via an electromagnetic shaker and vibrating backplate, was designed and experimentally tested at the
University of Loughborough. It was found that volume oscillation can either increase or decrease the acoustic power
being absorbed by the resonator, depending on the phase with which it is driven. A nonlinear numerical model of a
Helmbholtz resonator with an oscillating volume was then developed to simulate the experiments. Excellent agreement
between the numerical and experimental results is found. Furthermore, insight into how to obtain maximum power
absorption was provided by the numerical model and validated by the experiments. Finally, to optimize the phase in
real time (by minimizing the amplitude of the pressure oscillations), active control of the backplate vibration was
experimentally investigated. For the low Mach number grazing-flow regime investigated, this was found to give

increased damping and to increase the effective frequency range of the resonator.
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= phase difference between the pressure perturbations
across the resonator neck, deg;

v = phase difference between the backplate acceleration
and the neck pressure perturbation, deg

w = radian frequency, rad/s

Subscripts

ca = resonator cavity

d = downstream open end

eff = effective length

h = Helmholtz resonator neck position

i = variable zones

Is = loudspeakers

opt = optimum phases

p = pipe

tot = total length

u = upstream open end

1. Introduction

ELF-EXCITED combustion oscillations are generated by the

interaction between acoustic waves and combustion. Unsteady
heat release generates acoustic waves; these propagate within the
combustor and reflect from boundaries to arrive back at the combus-
tion zone, in which they cause more unsteady heat release. Under
certain conditions, this feedback can result in large and damaging
self-excited oscillations.

Helmbholtz resonators (HRs) are widely used in combustion
systems as acoustic dampers to stabilize combustion instabilities [1].
At resonance, a large volume of fluid in the cavity compresses and
expands periodically, as the mass of fluid in the neck vibrates. The
damping mechanism is primarily due to thermoviscous and vortex-
shedding losses [2-5]. The resonant frequency of HRs is given
approximately by w? = ¢2S/Vl, where S and I are the neck
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cross-sectional area and effective length, respectively; V is the
volume of the resonator cavity; and c is the speed of sound [6]. If the
frequency of the unstable mode in the combustion system is close to
the HR resonant frequency, the HR can efficiently dissipate acoustic
energy. However, the effective frequency range of HRs is normally
narrow and lower frequencies require physically large dampers,
which can be difficult to implement within an engine environment.

There is currently interest in approaches that are able to increase
the effective frequency range of Helmholtz resonators. One such
approach is tuned passive control, which exploits the fact that the
resonant frequency can be varied by altering the resonator geometry
[7-12]: for example, by changing the neck area. An alternative
approach, which is the one being investigated in this paper, is to
oscillate the resonator volume [13—18]. This could be more attractive
than, say, changing the neck area (which potentially requires 2
components to slide relative to one another) in what is a hostile
environment, although there are still clearly practical issues to be
overcome for such a device to be successfully used. However, it will
be shown later that if practically feasible, oscillation of the cavity
volume can either increase or decrease the viscous effects of the
movement of the neck flow and hence the acoustic power being
absorbed.

In this paper, investigations into the effect of volume oscillation
consist of both modeling and experiments. A Helmholtz resonator
with an oscillating volume was experimentally investigated in a pipe
system at the University of Loughborough. This is described in
Sec. II. The backplate was driven via an electromagnetic shaker and a
signal generator, for which the phase could be varied. In Sec. III, a
model for the damping effect of a HR with an oscillating volume is
developed. A nonlinear HR model is coupled with the linearized
flow-conservation equations along the pipe. In Sec. IV, the numerical
and experimental results are compared and discussed. In Sec. V,
using the numerical and experimental results, design guidance rules
for optimizing the damping performance of a Helmholtz resonator
with an oscillating volume are extracted. Finally, in Sec. VI, we
experimentally demonstrate that active control of a HR volume
oscillation can greatly increase its damping over a broad frequency
range.

II. Description of the Experiment

To investigate the effect of volume oscillation on acoustic
damping, a Helmholtz resonator with an oscillating volume was
experimentally investigated. The experimental setup is shown in
Fig. 1. A Helmholtz resonator with a vibrating backplate was connec-
ted to an open-ended pipe with a circular cross section of 120 mm
diameter (corresponding to a cuton frequency of approximately
1700 Hz). This ensured that all nonplanar modes were well cut off for
the frequency range of interest. The total length of the pipe, Xior,» Was
4.03 m. Attached to this pipe were two loudspeakers for acoustic
excitation at the same axial length.

The HR backplate consisted of an aluminum plate attached to an
electromagnetic shaker. A seal was provided by a rubber diaphragm

that was attached both to the aluminum plate and the rigid sidewalls
of the resonator cavity. In combustion-related applications, the
resonator neck may be subject to a very-low Mach number grazing
flow [19]. Hence, a centrifugal fan was used to draw a small amount
of flow along the pipe and past the resonator neck with a velocity of
order 1 m/s. Five pressure transducers (k1, k2, k3, k4, and k5) were
used to measure the pressure perturbations along the pipe (at —1.83,
—2.27, —2.45, —2.67, and —2.81 m, respectively). These were
spaced to maximize the accuracy of the mode shape definitions
within the pipe over the frequency range of interest. One pressure
transducer, k6, was located inside the resonator cavity. An accelero-
meter was attached to the resonator backplate to measure its
acceleration. A LabVIEW program was developed to generate dri-
ving signals to the backplate and the loudspeakers. The backplate and
loudspeakers were always driven at the same frequency, but the
phase difference between them could be varied.

The geometry of the experimental setup and the HR are sum-
marized in Table 1. An overbar denotes a mean value.

ITII. Description of the Numerical Model

An axial pipe system with both ends open is simulated,
corresponding to the experimental setup at the University of Lough-
borough, as shown in Fig. 2. In the experiments, loudspeakers were
used as sound sources to generate the plane waves propagating along
the pipe. In the numerical model, these are simulated as point mono-
poles. A signal simulator is applied to generate phase-shifted signals
to control the backplate velocity and the loudspeakers’ volume flow
rate.

The mean flow is assumed to be steady and one-dimensional. The
flow fluctuations are modeled as being due to plane acoustic waves
traveling in opposite directions. The wave strengths are denoted by
R, (), L(1), Ry(2), L,(t), R3(¢), and L;(¢) in different regions, as
shown in Fig. 2. Contributions from vorticity and entropy waves are
neglected, and the acoustic waves are assumed to behave linearly
with respect to the mean flow. If we let L; denote the acoustic wave
strengths of L,(¢), L,(t), or L3(¢) and R; denote R,(t), R,(¢), or
R;(1), the equations for the pressure fluctuations are given by

P (x 1) =R,-(z— T ) + L,<z+%) (1a)
c+u c—u

, 1 x X
p(x,t)—?[R,(t—E_’_ﬁ)+L,v(t+m)i| (Ic)

where p denotes the pressure, u is the flow velocity, p is the density,
and c speed of sound. A prime denotes a perturbation.
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Fig. 1 Schematic of the experimental setup.
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Table 1 Geometry of the experimental pipe system

Parameter Value
Axial distance from the HR to loudspeakers, x;,, m 2.48-2.65
Axial distance from the upstream end to loudspeakers, x,,, m 3.78-3.95
HR cavity volume V, m? 4.1-4.25 x 104
Pipe cross-sectional area, S, m 1.13 x 1072
Cross-sectional area of the HR neck, S, m? 235 %x 1074

The pipe boundaries are modeled using pressure reflection
coefficients R, at the upstream open end and R, at the downstream
open end. The acoustic wave strengths on either side of the resonator
are related by combining the flow-conservation equations. A
nonlinear model of a Helmholtz resonator with an oscillating volume
is used, which is an extension of the nonlinear discharge coefficient
model used in several previous studies [2,3,5].

Momentum balance and mass continuity across the resonator neck
give

wm”(uuﬂ):(—w%MKﬂﬁ —umﬁ)<uun)
Plal®) pcs/v 0 Plal)
N ( Py ()] pleg )
(—pe2/V)(OV'(1)/dt)

where K is the discharge coefficient, u)(7) is the flow velocity
through the resonator neck, p.,(f) is the cavity pressure of the
resonator, and [ is the neck effective length.

Compared with the nonlinear HR model [2,3,5,20], Eq. (2) for a
Helmholtz resonator with an oscillating volume includes an
additional (—p&2/V)(dV’/dr) term. This captures the fact that the
rate of mass change in the resonator cavity is now affected by both
density and volume changes.

The loudspeakers are assumed to be sufficiently short compared
with the acoustic wave length that they can be modeled as point
monopoles located at x = 0. The acoustic wave strengths on either
side of the loudspeakers are related by applying the linearized flow-
conservation equations across the loudspeakers. Thus, the pipe end
boundary conditions, the flow-conservation equations across the
resonator and the loudspeakers, and the nonlinear model of a
Helmholtz resonator with an oscillating volume provide enough
information to solve for each of the six wave strengths in Fig. 2. The
resulting matrix equation is given by

@

2(xy—xp)
L (f - W) ,
—pcuy(nS
Ll (t) Xn 25,
R, (1) Ry\ 71— (T+it) —peu, (S
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A

\J

L simulator
)

where M is the mean Mach number, Vls is the volume flow rate of the
loudspeakers, and X and Y are coefficient matrices, shown in the
Appendix.

The power absorption coefficient, which denotes the fraction of
incident energy being absorbed, is defined as a function of the wave
strengths of R, (¢), L,(¢), L,(t), and R,(¢) as

Azl_c&mv+uxm74 @
LD + IR ()?

In the experiments, the two-microphone technique [21] was used to
determine the wave strengths of R, (#), L,(t), L,(), and R,() and
hence the power absorption coefficient. In the numerical model, the
wave strengths are determined numerically by solving the coupled
equations (2) and (3).

IV. Comparison Between Numerical and
Experimental Results
A. Choosing Parameters for the Numerical Model

Various parameters had to be chosen for the numerical model, as
shown in Table 2. They were chosen to give a close match to the
experimentally measured mode shape and power absorption curves
for the Helmholtz resonator with a fixed volume (i.e., no volume
oscillation). It can be seen that the length of the pipe simulated in the
numerical model just slightly exceeds the actual pipe length of
4.03 m. This takes account of the end correction for the open end.
Furthermore, the end reflection coefficient were taken to be identical
at the upstream and downstream ends (justified due to the low speed
of the grazing flow). Good fits were obtained with R, = R;=
—0.943, which is slightly less (in magnitude) than the theoretical
value of —1 for an open end. This means that the numerical model is
capturing some of the acoustic energy loss that occur.

In the absence of volume oscillation, the Helmholtz resonator had
a resonant frequency of 189 Hz. The acoustic power absorption
coefficient and the pressure phase change across the resonator neck,
¢, are shown as a function of frequency in Fig. 3. The sound pressure
level in the pipe was maintained at approximately 135 dB. The
agreement between numerical and experimental power absorption
plots is excellent near the resonant frequency, where the maximum
power absorption occurs. Note that in the absence of volume
oscillation, the pressure phase change across the neck at maximum
power absorption is approximately 90 deg.

The mode shape along the pipe at the resonant frequency is shown
in Fig. 4. The experiment was set up such that the resonator is
approximately located at the pressure antinode to give maximum

Asin(wt)

o
Signal

Volume-oscillating Helmholtz resonator

DPea loudspeakers |
——————— _| ,_ EEEEEEE \fﬁ% [EpEp————
mean flow Ri(t) Ra(t) R3(t)
Li(t), . P, La(t) . Lst) . :
—:Xu =Xy X = 0 Xd

Fig. 2 Schematic of the numerical model.
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Table 2 Parameters used in the numerical model

Parameter Value
Axial distance from the HR to loudspeakers, x;,, m 2.45
Axial distance from the upstream end to loudspeakers, x,,, m 3.79
Effective length of the pipe, x,,, m 4.07
HR cavity volume V, m? 42x107*
Reflection coefficients at upstream and downstream ends, R,,, R, —0.943
Discharge coefficient K 0.819
End correction coefficient for the pipe length, k, 1.32
End correction coefficient for the HR, «, 0.68
Time step At, s 1.0 x 104

power absorption, and this is indicated by the mode shape along the
pipe. There is excellent agreement between the numerical and the
experimental mode shapes.

B. Results for the Helmholtz Resonator with an Oscillating Volume

We now investigate the damping effect of a Helmholtz resonator
with an oscillating volume. The parameters presented in Table 2 were
used in the numerical simulations; no additional tuning of any
numerical parameters took place. The backplate vibration amplitude
is denoted by the power settings of the shaker. With no backplate
displacement, the pressure fluctuation recorded in the resonator
cavity (k6) was measured with the loudspeakers activated (approxi-
mately 700 Pa). With the loudspeakers switched off, power to the
shaker was applied and the cavity pressure fluctuations were
measured. These were noted for different power settings and
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Fig. 3 Power absorption and phase across the neck characteristics of

the Helmholtz resonator.
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Fig. 4 RMS pressure fluctuations along the length of the test pipe at

189 Hz.

compared with those pressures generated by the loudspeaker forcing
(and with no backplate vibration). A 100% shaker power denotes a
pressure at k6 comparable with that generated by the loudspeakers
(approximately 700 Pa), and 150% shaker power corresponds to
approximately 1050 Pa.

With this 100% shaker power setting at frequencies of 150, 170,
184, and 210 Hz, the resonator damping effects are shown in Fig. 5.
At each given frequency, the power absorption varies as the phase of
the shaker signal varies, giving the vertical lines in Fig. 5. As already
shown in Eq. (4), the power absorption coefficient has been
normalized with respect to the incident wave energy. Thus, the
maximum value cannot exceed + 1.0, but the minimum value can be
more negative than —1.0 (i.e., noise generation). However, this effect
was not observed and so the scale is plotted from +1.0 to —1.0. The
data clearly show that the oscillating volume can either increase or
decrease the power absorbed, depending on the phase of the
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Fig. 5 Power absorption coefficient against the loudspeaker driving
frequency.
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the phase of the backplate forcing is varied.
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oscillation. There is excellent agreement between the numerical and
experimental results in the range of power absorptions seen at each
frequency. We will now perform more detailed investigations into
the effect of shaker phase on the damping behavior of a Helmholtz
resonator with an oscillating volume.

C. Volume Oscillation Effects on Resonant Frequency

As the resonator cavity volume oscillates, the mass continuity
across the resonator neck depends on both density and volume
oscillations, as shown in Eq. (5):

Vap() V()

PSuL(1) ==, P ©)

where V'(¢) denotes the backplate displacement.

The results presented in Fig. 5 have shown that under certain phase
conditions, the power absorption can be dramatically increased. This
is most likely due to the fact that the resonant frequency is shifted as
the backplate is vibrated. Taking Laplace transforms of Eqgs. (2) and
(5) with discharge coefficient K set to 0, a transfer function between
the flow velocity through the neck and neck pressure perturbation,
i, (jw)/pyr(jw), can be established by coupling with the transfer

function V(jw)/ i, (jw) as

ﬁh (j a)) _ 1 (62)
(o) pBS/Vjw + plyjo — pe*V(jo)/ Vi, (jw)

14

iy,

V(jo) _
it (jw)

where ¢ denotes the phase difference between V( Jjw) and the neck
flow velocity i, (jw). Figure 6 shows the magnitude of the frequency
response of a Helmholtz resonator with an oscillating volume as the
phase angle is varied. It is clear that the backplate vibration can shift
the resonant frequency, enabling a large power absorption over a
broad frequency range.

e/t (6b)

V. Optimizing the Damping Performance of a
Helmholtz Resonator with an Oscillating Volume

To gain insight into the conditions under which the optimum
shaker phase angle occurs, a parametric study was carried out. This
suggested that the phase angle 1 between the backplate acceleration
d?V’(¢)/df* and the neck pressure k3 could be useful for design
guidance. Furthermore, because it was known that for a constant
volume HR, peak power absorption occurs when the pressure phase
change across the neck, ¢, is approximately 90 deg, the variations of
power absorption and phase ¢ with the phase ¥ were studied for an
oscillating volume. For these studies, three frequencies were
considered: one close to the resonant frequency of the HR, one above
and one below.

Close to the resonant frequency (i.e., at a frequency of 184 Hz), the
results are shown in Fig. 7. For the numerical model, the power
absorption coefficient is maximized when the pressure phase change
across the neck ¢ is approximately 91 deg and when v is approxi-
mately 173 deg; for the experiments, these values were approxi-
mately ¢ ~92 deg and ¥ ~ 192 deg. Thus, the predicted and
measured optimum phases are in close agreement.

Table 3 Comparison between the numerical optimum phases of ¢ and ¥ and the
experimental ones

Experiment ¥/, deg  Model ¥y, deg

Frequency, Hz  Experiment ¢, deg  Model @, deg

150 Gopt = S1L1T£30  po =T425 Yo = 12701 £30 Y, = 1172
170 Gopt =76.06 30 P =T1.81 Yo = 13218 £30 ¥, = 1482
184 Gopt = 91.61 £30 ¢y =90.85 Yo = 191.65£30 Yy = 172.87
210 Gopt = 1239430 oy = 133.67  You =240.0£30 Y, = 2346
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Table 4 Variation of optimum phase ¢ and ¥ with
acoustic frequency @ presented in the pipe

w, rad/s ¢, deg Y, deg

> Dopt > 90 Yope > 180
o < w, ¢0m <90 wom < 180
o= w, Dope = 90 Yop =~ 180

The results below (150 Hz) and above (210 Hz) the resonant
frequency of the HR are shown in Figs. 8§ and 9 respectively. It can be
seen that the matching between the experimental and numerical
results is slightly less good than at the resonant frequency. This is
likely to be because the numerical model parameters were optimized
for behavior at the resonant frequency. However, qualitatively, the
numerical and experimental results are in good agreement and
revealed that below resonance, the optimum phase ¢, is less than
90 deg and ¥, is less than 180 deg, whereas above resonance, @ is
greater than 90 deg and ¥, is greater than 180 deg. These findings
are insightful for optimizing the resonator power absorption.

The numerical and experimental values of the optimum phases
Gop. and Y, are summarized for four different frequencies in
Table 3. The numerical and experimental results agree well and can
be extrapolated to the more general rules summarized in Table 4,
where w, denotes the resonant frequency. This table provides
guidance for the optimum design of a Helmholtz resonator with an
oscillating volume.

VI. Active Control of a Helmholtz Resonator
with an Oscillating Volume

So far, we have shown that vibrating the resonator backplate can
either increase or decrease its damping performance. This depends
on the phase of the backplate vibration. It is interesting now to
experimentally investigate whether it is possible to use active control
of the phase with which the volume is oscillated, to maximize the
damping effect. A useful start point is to investigate minimizing the
neck pressure amplitude k3 by active control of the backplate
vibration.

The control approach is a two-stage control algorithm, which is to
track and minimize in real time the pressure signal measured by the
pressure transducer at the resonator neck (k3), as shown in Fig. 10.
This measured pressure is fed to a real-time mode characterization
algorithm [7], which analyzes the signal and provides the frequency
and amplitude of the dominant mode. This information is passed to a
two-stage control algorithm. The first stage identifies whether the
frequency present in the system is below or above the resonant
frequency of the HR and chooses an initial guess of the optimum
backplate phase according to Table 4. Even though in our experiment
the forcing frequency was known exactly, this would not be true for a
general combustion system, and so the frequency was initially
assumed to be unknown. The second stage uses the amplitude
information to vary the backplate phase to minimize the pressure

Initial-tuning

amplitude using a revised Newton—Raphson method. The amplitude
of the backplate vibration, denoted as a shaker power setting, can be
varied. However, in the experiments, the shaker power setting was
chosen to be set to either 150 or 100%.

The mode characterization algorithm and the two-stage control
algorithm were implemented in LabVIEW 8.0, with the data
acquisition system consisting of a National Instruments PCI 6229
and a BNC 2090 connector. More details about these two algorithms
are given by Zhao and Morgans [7].

The effect of implementing this experimentally with a shaker
power setting of 150% at a frequency of 150 Hz is shownin Fig. 11.1t
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00 1 2 3 4 5 6 7 8

Time (s)
Fig. 11 Minimizing neck pressure amplitude by active control of the
backplate vibration at 150 Hz, with a power setting of 150%.
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Fig. 12 Pressure spectra showing the damping effect of neck pressure
by active control of backplate vibration at 150 Hz.
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is clear that once the backplate vibration is actively controlled, the
neck pressure amplitude measured by &3 is significantly reduced
from approximately 130 to 20 Pa. Correspondingly, the sound
pressure level is reduced by approximately 16 dB, as shown in
Fig. 12.

The effect of reducing the backplate power setting to 100% at the
same frequency of 150 Hz is shown in Fig. 13. The amplitude of the
measured pressure, k3, is reduced from 140 to approximately 105 Pa
once the backplate vibration is actively controlled. The smaller
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Neck pressure amplitude
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)
=
—_F
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w
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w b
o b
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=

106y 1 2 3 4 5 6 7 8
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Fig. 13 Damping effect of active control at 150 Hz, with a backplate

power setting of 100%.
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Fig. 14 Measured pressure amplitude reduction and the correspond-
ing improvement of the power absorption due to backplate vibration
with 100% power setting.
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Fig. 15 Experimental variations of the power absorption coefficient
and the neck pressure amplitude with the phase ¥ at 150 Hz and a
backplate power setting of 100%.

reduction in the neck pressure amplitude is due to the reduced control
authority of the lower backplate pressure setting.

The results for frequencies of 170, 184, and 210 Hz are
summarized in Fig. 14, with the shaker power of each individual
frequency set to 100%. The effectiveness of active control is clearly
demonstrated on both minimizing neck pressure amplitude and
increasing power absorption (right graph). Note that for simplicity
in this study, we have used active control to minimize a pressure
amplitude at a specific location, rather than maximizing the acoustic
power absorbed. These are clearly not the same thing (see Fig. 15),
but for interest’s sake, the effect of the active control on the power
absorption at a backplate power setting of 100% is shown in Fig. 14
(right graph). The active control always increases the power
absorption, although not to the maximum level achievable.

VII. Conclusions

Experiments showed that oscillating the volume of a Helmholtz
resonator attached to a cold-flow pipe system can either increase or
decrease the effectiveness of the Helmholtz resonator as a damping
device. The frequency of the cavity volume oscillation was the same
as that present acoustically in the system. The improvement or
reduction in damping performance then depended on the phase of the
volume oscillation for a given amplitude of backplate movement.
Improvement was possible across a wide frequency range, making
volume oscillation an ideal tool for widening the effective frequency
range of a HR, as well as improving its damping performance.

A numerical model was developed to simulate the effect of the
volume oscillation. The main additional effect to include was that of
the cavity volume fluctuations on mass conservation through the HR
neck. This alters the power absorption coefficient and means that the
effective frequency range can be significantly broadened. The
numerical model captured the main features of the experimental
results very well.

To extract guidance for optimizing the performance of a
Helmholtz resonator with an oscillating volume, numerical and
experimental investigations were performed. General rules for
choosing the phase of the volume oscillation relative to the pressure
signal at the HR neck were obtained, with the experimental and
numerical results being consistent with one another. These rules are
insightful for optimizing the damping performance of a Helmholtz
resonator with an oscillating volume.

Active control of the volume oscillation phase angle was
performed experimentally. The frequency present in the system was
identified and used to obtain a best guess of the optimum phase. The
pressure oscillation amplitude at the HR neck was then minimized in
real time, and it was found that this was very effective for optimizing
the choice of phase angle.

The reported investigation was undertaken with the resonator
being subjected to a low Mach number grazing flow, as typically
found within a combustion system. However, it is thought that the
principle could also be applied to higher Mach number grazing flows
such as those found within various duct lining applications. How-
ever, this would require further work to be conducted at these higher
grazing flows to confirm the potential benefits.

Appendix: Coefficient Matrices in the Resulting
Matrix Equation

The full form of the coefficients in Eq. (3) is

01 0 0 R, 0 0 0

1 0 O 0 0o 0 1 0

X=loo 1 -1 Y 0 -1 0 Ry

00 —1 —1 0 -1 0 —Ry
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